Boundary operators in the O ( n ) and RSOS matrix models
نویسنده
چکیده
We study the new boundary condition of the O(n) model proposed by Jacobsen and Saleur using the matrix model. The spectrum of boundary operators and their conformal weights are obtained by solving the loop equations. Using the diagrammatic expansion of the matrix model as well as the loop equations, we make an explicit correspondence between the new boundary condition of the O(n) model and the “alternating height” boundary conditions in RSOS model.
منابع مشابه
The spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملBoundary Flows in the general Coset Theories
In this paper we study the boundary effects for off-critical integrable field theories which have close analogs with integrable lattice models. Our models are the SU(2)k ⊗ SU(2)l/SU(2)k+l coset conformal field theories perturbed by integrable boundary and bulk operators. The boundary interactions are encoded into the boundary reflection matrix. Using the TBA method, we verify the flows of the c...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کاملBoundary Flows in general Coset Theories
In this paper we study the boundary effects for off-critical integrable field theories which have close analogs with integrable lattice models. Our models are the SU(2)k ⊗ SU(2)l/SU(2)k+l coset conformal field theories perturbed by integrable boundary and bulk operators. The boundary interactions are encoded into the boundary reflection matrix. Using the TBA method, we verify the flows of the c...
متن کاملA new sequence space and norm of certain matrix operators on this space
In the present paper, we introduce the sequence space [{l_p}(E,Delta) = left{ x = (x_n)_{n = 1}^infty : sum_{n = 1}^infty left| sum_{j in {E_n}} x_j - sum_{j in E_{n + 1}} x_jright| ^p < infty right},] where $E=(E_n)$ is a partition of finite subsets of the positive integers and $pge 1$. We investigate its topological properties and inclusion relations. Moreover, we consider the problem of fin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009